Global aromaticity at the nanoscale

Michel Rickhaus, Michael Jirasek, Lara Tejerina, Henrik Gotfredsen, Martin D.

Peeks, Renée Haver, Hua-Wei Jiang, Timothy D. W. Claridge, Harry L. Anderson

Nature Chemistry 2020, 12, 236–241

Published: January 20th

Harry Anderson: Professor at University of Oxford

Research areas:

- π -Conjugated porphyrin nanostructures
- Switchable dyes for super-resolution microscopy
- Single-molecule electronic devices
- Polyyne rotaxanes, catenanes and cyclocarbons
- Understanding cooperativity and molecular recognition.

Michel Rickhaus: Group Leader at University of Zurich

Research area:

Distorted polyaromatic molecules

http://research.chem.ox.ac.uk/harry-anderson.aspx https://www.chem.uzh.ch/en/research/groups/rickhaus/research.html

Criteria for aromaticity:

- Cyclic molecule, conjugated π -system
- Planar
- Follows Hückel-rule: $4n+2\pi$ –electrons

- Electron-delocalization is limited by symmetrybreaking transitions
- e.g. polymethine dyes: localized charge after exceeding critical chain length

$$\left[\underbrace{D}_{n} \xrightarrow{(n)}_{n} \underbrace{D}_{n} \underbrace{D}_{n} \xrightarrow{(n)}_{n} \underbrace{D}_{n} \xrightarrow{($$

<u>R. Gieseking, M. Ravva, V. Coropceanu, J.-L. Brédas, J. Phys.</u> Chem. C 2016, 120, 9975-9984.

- Size limit of aromatic rings unknown
- Largest aromatic ring reported before: 62 π -electrons

2 (64π) <u>T. Yoneda, T. Soya, S. Neya, A. Osuka, *Chem. Eur.* <u>J. **2016**</u>, 22, 14518.</u>

Ring current and NMR shifts

Antiaromatic compounds

→ determination of aromatic character by NMR–spectroscopy

Annulenes: Trannulenes: π -orbitals perpendicular to ring plane π -orbitals in plane

Both follow the Hückel rule

- Synthesis of porphyrin nanoring complexes
- Variation of number of π -electrons, largest complex: 162 π -eletrons
- Examination of 2+, 4+, and 6+ oxidation states

Example for template synthesis

- Interconversion of THS $_{\mbox{\tiny in}}$ and THS $_{\mbox{\tiny out}}$ is slow on the NMR timescale
- Neutral molecule: no ring current because local porphyring ring current dominates
- \rightarrow Mixed valence state is essential for nanoscale charge delocalization

Examination of influence of topology on aromaticity

- Change in shifts of THS_{in} in ¹H NMR
- Change in shifts of CF₃ in ¹⁹F NMR

Examination of influence of topology on aromaticity

Examination of influence of topology on aromaticity

Exhibits ring current

Does not exhibit ring current Opposite currents of ring loops cancel \rightarrow no ring current

Conclusion

- Report of largest aromatic ring with 162 π -electrons
- Hückel's rule can be applied to trannulenes as well
- Hückel's rule is still valid for large systems
- Mixed valence state is necessary for charge delocalization
- Aromaticity can be controlled by geometry